Abstract:Some of the major limitations identified in the areas of argument mining, argument generation, and natural language argument analysis are related to the complexity of annotating argumentatively rich data, the limited size of these corpora, and the constraints that represent the different languages and domains in which these data is annotated. To address these limitations, in this paper we present the following contributions: (i) an effective methodology for the automatic generation of natural language arguments in different topics and languages, (ii) the largest publicly available corpus of natural language argumentation schemes, and (iii) a set of solid baselines and fine-tuned models for the automatic identification of argumentation schemes.
Abstract:In this paper, we describe VivesDebate-Speech, a corpus of spoken argumentation created to leverage audio features for argument mining tasks. The creation of this corpus represents an important contribution to the intersection of speech processing and argument mining communities, and one of the most complete publicly available resources in this topic. Moreover, we have performed a set of first-of-their-kind experiments which show an improvement when integrating audio features into the argument mining pipeline. The provided results can be used as a baseline for future research.
Abstract:The rVRAIN team tackled the Budget Argument Mining (BAM) task, consisting of a combination of classification and information retrieval sub-tasks. For the argument classification (AC), the team achieved its best performing results with a five-class BERT-based cascade model complemented with some handcrafted rules. The rules were used to determine if the expression was monetary or not. Then, each monetary expression was classified as a premise or as a conclusion in the first level of the cascade model. Finally, each premise was classified into the three premise classes, and each conclusion into the two conclusion classes. For the information retrieval (i.e., relation ID detection or RID), our best results were achieved by a combination of a BERT-based binary classifier, and the cosine similarity of pairs consisting of the monetary expression and budget dense embeddings.
Abstract:The lack of annotated data on professional argumentation and complete argumentative debates has led to the oversimplification and the inability of approaching more complex natural language processing tasks. Such is the case of the automatic debate evaluation. In this paper, we propose an original hybrid method to automatically evaluate argumentative debates. For that purpose, we combine concepts from argumentation theory such as argumentation frameworks and semantics, with Transformer-based architectures and neural graph networks. Furthermore, we obtain promising results that lay the basis on an unexplored new instance of the automatic analysis of natural language arguments.
Abstract:Argument Mining is defined as the task of automatically identifying and extracting argumentative components (e.g., premises, claims, etc.) and detecting the existing relations among them (i.e., support, attack, rephrase, no relation). One of the main issues when approaching this problem is the lack of data, and the size of the publicly available corpora. In this work, we use the recently annotated US2016 debate corpus. US2016 is the largest existing argument annotated corpus, which allows exploring the benefits of the most recent advances in Natural Language Processing in a complex domain like Argument (relation) Mining. We present an exhaustive analysis of the behavior of transformer-based models (i.e., BERT, XLNET, RoBERTa, DistilBERT and ALBERT) when predicting argument relations. Finally, we evaluate the models in five different domains, with the objective of finding the less domain dependent model. We obtain a macro F1-score of 0.70 with the US2016 evaluation corpus, and a macro F1-score of 0.61 with the Moral Maze cross-domain corpus.