Abstract:Remote sensing images are highly valued for their ability to address complex real-world issues such as risk management, security, and meteorology. However, manually captioning these images is challenging and requires specialized knowledge across various domains. This letter presents an approach for automatically describing (captioning) remote sensing images. We propose a novel encoder-decoder setup that deploys a Text Graph Convolutional Network (TextGCN) and multi-layer LSTMs. The embeddings generated by TextGCN enhance the decoder's understanding by capturing the semantic relationships among words at both the sentence and corpus levels. Furthermore, we advance our approach with a comparison-based beam search method to ensure fairness in the search strategy for generating the final caption. We present an extensive evaluation of our approach against various other state-of-the-art encoder-decoder frameworks. We evaluated our method across three datasets using seven metrics: BLEU-1 to BLEU-4, METEOR, ROUGE-L, and CIDEr. The results demonstrate that our approach significantly outperforms other state-of-the-art encoder-decoder methods.
Abstract:The last few years have witnessed an exponential rise in the propagation of offensive text on social media. Identification of this text with high precision is crucial for the well-being of society. Most of the existing approaches tend to give high toxicity scores to innocuous statements (e.g., "I am a gay man"). These false positives result from over-generalization on the training data where specific terms in the statement may have been used in a pejorative sense (e.g., "gay"). Emphasis on such words alone can lead to discrimination against the classes these systems are designed to protect. In this paper, we address the problem of offensive language detection on Twitter, while also detecting the type and the target of the offence. We propose a novel approach called SyLSTM, which integrates syntactic features in the form of the dependency parse tree of a sentence and semantic features in the form of word embeddings into a deep learning architecture using a Graph Convolutional Network. Results show that the proposed approach significantly outperforms the state-of-the-art BERT model with orders of magnitude fewer number of parameters.