Abstract:Localization of chest pathologies in chest X-ray images is a challenging task because of their varying sizes and appearances. We propose a novel weakly supervised method to localize chest pathologies using class aware deep multiscale feature learning. Our method leverages intermediate feature maps from CNN layers at different stages of a deep network during the training of a classification model using image level annotations of pathologies. During the training phase, a set of \emph{layer relevance weights} are learned for each pathology class and the CNN is optimized to perform pathology classification by convex combination of feature maps from both shallow and deep layers using the learned weights. During the test phase, to localize the predicted pathology, the multiscale attention map is obtained by convex combination of class activation maps from each stage using the \emph{layer relevance weights} learned during the training phase. We have validated our method using 112000 X-ray images and compared with the state-of-the-art localization methods. We experimentally demonstrate that the proposed weakly supervised method can improve the localization performance of small pathologies such as nodule and mass while giving comparable performance for bigger pathologies e.g., Cardiomegaly
Abstract:The widely used ChestX-ray14 dataset addresses an important medical image classification problem and has the following caveats: 1) many lung pathologies are visually similar, 2) a variant of diseases including lung cancer, tuberculosis, and pneumonia are present in a single scan, i.e. multiple labels and 3) The incidence of healthy images is much larger than diseased samples, creating imbalanced data. These properties are common in medical domain. Existing literature uses stateof- the-art DensetNet/Resnet models being transfer learned where output neurons of the networks are trained for individual diseases to cater for multiple diseases labels in each image. However, most of them don't consider relationship between multiple classes. In this work we have proposed a novel error function, Multi-label Softmax Loss (MSML), to specifically address the properties of multiple labels and imbalanced data. Moreover, we have designed deep network architecture based on fine-grained classification concept that incorporates MSML. We have evaluated our proposed method on various network backbones and showed consistent performance improvements of AUC-ROC scores on the ChestX-ray14 dataset. The proposed error function provides a new method to gain improved performance across wider medical datasets.