Abstract:In this paper, we consider the importance of channel measurement data from specific sites and its impact on air interface optimization and test. Currently, a range of statistical channel models including 3GPP 38.901 tapped delay line (TDL), clustered delay line (CDL), urban microcells (UMi) and urban macrocells (UMa) type channels are widely used for air interface performance testing and simulation. However, there remains a gap in the realism of these models for air interface testing and optimization when compared with real world measurement based channels. To address this gap, we compare the performance impacts of training neural receivers with 1) statistical 3GPP TDL models, and 2) measured macro-cell channel impulse response (CIR) data. We leverage our OmniPHY-5G neural receiver for NR PUSCH uplink simulation, with a training procedure that uses statistical TDL channel models for pre-training, and fine-tuning based on measured site specific MIMO CIR data. The proposed fine-tuning method achieves a 10% block error rate (BLER) at a 1.85 dB lower signal-to-noise ratio (SNR) compared to pre-training only on simulated TDL channels, illustrating a rough magnitude of the gap that can be closed by site-specific training, and gives the first answer to the question "how much can fine-tuning the RAN for site-specific channels help?"
Abstract:This work presents the first applications of self-supervised learning applied to data from digital antenna arrays. Encoder-decoder networks are pretrained on digital array data to perform a self-supervised noisy-reconstruction task called channel in-painting, in which the network infers the contents of array data that has been masked with zeros. The self-supervised step requires no human-labeled data. The encoder architecture and weights from pretraining are then transferred to a new network with a task-specific decoder, and the new network is trained on a small volume of labeled data. We show that pretraining on the unlabeled data allows the new network to perform the task of bandwidth regression on the digital array data better than an equivalent network that is trained on the same labeled data from random initialization.
Abstract:I/Q modulation classification is a unique pattern recognition problem as the data for each class varies in quality, quantified by signal to noise ratio (SNR), and has structure in the complex-plane. Previous work shows treating these samples as complex-valued signals and computing complex-valued convolutions within deep learning frameworks significantly increases the performance over comparable shallow CNN architectures. In this work, we claim state of the art performance by enabling high-capacity architectures containing residual and/or dense connections to compute complex-valued convolutions, with peak classification accuracy of 92.4% on a benchmark classification problem, the RadioML 2016.10a dataset. We show statistically significant improvements in all networks with complex convolutions for I/Q modulation classification. Complexity and inference speed analyses show models with complex convolutions substantially outperform architectures with a comparable number of parameters and comparable speed by over 10% in each case.
Abstract:Transceivers used for telecommunications transmit and receive specific modulation patterns that are represented as sequences of complex numbers. Classifying modulation patterns is challenging because noise and channel impairments affect the signals in complicated ways such that the received signal bears little resemblance to the transmitted signal. Although deep learning approaches have shown great promise over statistical methods in this problem space, deep learning frameworks continue to lag in support for complex-valued data. To address this gap, we study the implementation and use of complex convolutions in a series of convolutional neural network architectures. Replacement of data structure and convolution operations by their complex generalization in an architecture improves performance, with statistical significance, at recognizing modulation patterns in complex-valued signals with high SNR after being trained on low SNR signals. This suggests complex-valued convolutions enables networks to learn more meaningful representations. We investigate this hypothesis by comparing the features learned in each experiment by visualizing the inputs that results in one-hot modulation pattern classification for each network.