Abstract:Cohort Intelligence or CI is one of its kind of novel optimization algorithm. Since its inception, in a very short span it is applied successfully in various domains and its results are observed to be effectual in contrast to algorithm of its kind. Till date, there is no such type of bibliometric analysis carried out on CI and its related applications. So, this research paper in a way will be an ice breaker for those who want to take up CI to a new level. In this research papers, CI publications available in Scopus are analyzed through graphs, networked diagrams about authors, source titles, keywords over the years, journals over the time. In a way this bibliometric paper showcase CI, its applications and detail outs systematic review in terms its bibliometric details.
Abstract:We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computation graphs. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distribute tensors, based on which GSPMD will parallelize the computation. Its representation of partitioning is simple yet general, allowing it to express different or mixed paradigms of parallelism on a wide variety of models. GSPMD infers the partitioning for every operator in the graph based on limited user annotations, making it convenient to scale up existing single-device programs. It solves several technical challenges for production usage, such as static shape constraints, uneven partitioning, exchange of halo data, and nested operator partitioning. These techniques allow GSPMD to achieve 50% to 62% compute utilization on 128 to 2048 Cloud TPUv3 cores for models with up to one trillion parameters. GSPMD produces a single program for all devices, which adjusts its behavior based on a run-time partition ID, and uses collective operators for cross-device communication. This property allows the system itself to be scalable: the compilation time stays constant with increasing number of devices.