Abstract:Hyperspectral imaging (HSI) captures spatial and spectral data, enabling analysis of features invisible to conventional systems. The technology is vital in fields such as weather monitoring, food quality control, counterfeit detection, healthcare diagnostics, and extending into defense, agriculture, and industrial automation at the same time. HSI has advanced with improvements in spectral resolution, miniaturization, and computational methods. This study provides an overview of the HSI, its applications, challenges in data fusion and the role of deep learning models in processing HSI data. We discuss how integration of multimodal HSI with AI, particularly with deep learning, improves classification accuracy and operational efficiency. Deep learning enhances HSI analysis in areas like feature extraction, change detection, denoising unmixing, dimensionality reduction, landcover mapping, data augmentation, spectral construction and super resolution. An emerging focus is the fusion of hyperspectral cameras with large language models (LLMs), referred as highbrain LLMs, enabling the development of advanced applications such as low visibility crash detection and face antispoofing. We also highlight key players in HSI industry, its compound annual growth rate and the growing industrial significance. The purpose is to offer insight to both technical and non-technical audience, covering HSI's images, trends, and future directions, while providing valuable information on HSI datasets and software libraries.
Abstract:Blockchain technology has revolutionized the financial landscape, with cryptocurrencies gaining widespread adoption for their decentralized and transparent nature. As the sentiment expressed on social media platforms can significantly influence cryptocurrency discussions and market movements, sentiment analysis has emerged as a crucial tool for understanding public opinion and predicting market trends. Motivated by the aim to enhance sentiment analysis accuracy in the cryptocurrency domain, this paper investigates fine-tuning techniques on large language models. This paper also investigates the efficacy of supervised fine-tuning and instruction-based fine-tuning on large language models for unseen tasks. Experimental results demonstrate a significant average zero-shot performance gain of 40% after fine-tuning, highlighting the potential of this technique in optimizing pre-trained language model efficiency. Additionally, the impact of instruction tuning on models of varying scales is examined, revealing that larger models benefit from instruction tuning, achieving the highest average accuracy score of 75.16%. In contrast, smaller-scale models may experience reduced generalization due to the complete utilization of model capacity. To gain deeper insight about how instruction works with these language models, this paper presents an experimental investigation into the response of an instruction-based model under different instruction tuning setups. The investigation demonstrates that the model achieves an average accuracy score of 72.38% for short and simple instructions. This performance significantly outperforms its accuracy under long and complex instructions by over 12%, thereby effectively highlighting the profound significance of instruction characteristics in maximizing model performance.