Abstract:The rapid growth of the global population and the continuous decline in cultivable land pose significant threats to food security. This challenge worsens as climate change further reduces the availability of farmland. Soilless agriculture, such as hydroponics, aeroponics, and aquaponics, offers a sustainable solution by enabling efficient crop cultivation in controlled environments. The integration of the Internet of Things (IoT) with smart precision farming improves resource efficiency, automates environmental control, and ensures stable and high-yield crop production. IoT-enabled smart farming systems utilize real-time monitoring, data-driven decision-making, and automation to optimize water and nutrient usage while minimizing human intervention. This paper explores the opportunities and challenges of IoT-based soilless farming, highlighting its role in sustainable agriculture, urban farming, and global food security. These advanced farming methods ensure greater productivity, resource conservation, and year-round cultivation. However, they also face challenges such as high initial investment, technological dependency, and energy consumption. Through a comprehensive study, bibliometric analysis, and comparative analysis, this research highlights current trends and research gaps. It also outlines future directions for researchers, policymakers, and industry stakeholders to drive innovation and scalability in IoT-driven soilless agriculture. By emphasizing the benefits of vertical farming and Controlled Environment Agriculture (CEA)-enabled soilless techniques, this paper supports informed decision-making to address food security challenges and promote sustainable agricultural innovations.
Abstract:Blockchain technology has revolutionized the financial landscape, with cryptocurrencies gaining widespread adoption for their decentralized and transparent nature. As the sentiment expressed on social media platforms can significantly influence cryptocurrency discussions and market movements, sentiment analysis has emerged as a crucial tool for understanding public opinion and predicting market trends. Motivated by the aim to enhance sentiment analysis accuracy in the cryptocurrency domain, this paper investigates fine-tuning techniques on large language models. This paper also investigates the efficacy of supervised fine-tuning and instruction-based fine-tuning on large language models for unseen tasks. Experimental results demonstrate a significant average zero-shot performance gain of 40% after fine-tuning, highlighting the potential of this technique in optimizing pre-trained language model efficiency. Additionally, the impact of instruction tuning on models of varying scales is examined, revealing that larger models benefit from instruction tuning, achieving the highest average accuracy score of 75.16%. In contrast, smaller-scale models may experience reduced generalization due to the complete utilization of model capacity. To gain deeper insight about how instruction works with these language models, this paper presents an experimental investigation into the response of an instruction-based model under different instruction tuning setups. The investigation demonstrates that the model achieves an average accuracy score of 72.38% for short and simple instructions. This performance significantly outperforms its accuracy under long and complex instructions by over 12%, thereby effectively highlighting the profound significance of instruction characteristics in maximizing model performance.