Abstract:Prefix circuits are fundamental components in digital adders, widely used in digital systems due to their efficiency in calculating carry signals. Synthesizing prefix circuits with minimized area and delay is crucial for enhancing the performance of modern computing systems. Recently, large language models (LLMs) have demonstrated a surprising ability to perform text generation tasks. We propose PrefixLLM, that leverages LLMs for prefix circuit synthesis. PrefixLLM transforms the prefix circuit synthesis task into a structured text generation problem, termed the Structured Prefix Circuit Representation (SPCR), and introduces an iterative framework to automatically and accurately generate valid SPCRs. We further present a design space exploration (DSE) framework that uses LLMs to iteratively search for area and delay optimized prefix circuits. Compared to state-of-the-art, PrefixLLM can reduce the area by 3.70% under the same delay constraint. This work highlights the use of LLMs in the synthesis of arithmetic circuits, which can be transformed into the structured text generation.
Abstract:In recent years, applying Deep Learning (DL) techniques emerged as a common practice in the communication system, demonstrating promising results. The present paper proposes a new Convolutional Neural Network (CNN) based Variational Autoencoder (VAE) communication system. The VAE (continuous latent space) based communication systems confer unprecedented improvement in the system performance compared to AE (distributed latent space) and other traditional methods. We have introduced an adjustable hyperparameter beta in the proposed VAE, which is also known as beta-VAE, resulting in extremely disentangled latent space representation. Furthermore, a higher-dimensional representation of latent space is employed, such as 4n dimension instead of 2n, reducing the Block Error Rate (BLER). The proposed system can operate under Additive Wide Gaussian Noise (AWGN) and Rayleigh fading channels. The CNN based VAE architecture performs the encoding and modulation at the transmitter, whereas decoding and demodulation at the receiver. Finally, to prove that a continuous latent space-based system designated VAE performs better than the other, various simulation results supporting the same has been conferred under normal and noisy conditions.