Abstract:Edge-based computer vision models running on compact, resource-limited devices benefit greatly from using unprocessed, detail-rich RAW sensor data instead of processed RGB images. Training these models, however, necessitates large labeled RAW datasets, which are costly and often impractical to obtain. Thus, converting existing labeled RGB datasets into sensor-specific RAW images becomes crucial for effective model training. In this paper, we introduce ReRAW, an RGB-to-RAW conversion model that achieves state-of-the-art reconstruction performance across five diverse RAW datasets. This is accomplished through ReRAW's novel multi-head architecture predicting RAW image candidates in gamma space. The performance is further boosted by a stratified sampling-based training data selection heuristic, which helps the model better reconstruct brighter RAW pixels. We finally demonstrate that pretraining compact models on a combination of high-quality synthetic RAW datasets (such as generated by ReRAW) and ground-truth RAW images for downstream tasks like object detection, outperforms both standard RGB pipelines, and RAW fine-tuning of RGB-pretrained models for the same task.
Abstract:Current deep learning approaches in computer vision primarily focus on RGB data sacrificing information. In contrast, RAW images offer richer representation, which is crucial for precise recognition, particularly in challenging conditions like low-light environments. The resultant demand for comprehensive RAW image datasets contrasts with the labor-intensive process of creating specific datasets for individual sensors. To address this, we propose a novel diffusion-based method for generating RAW images guided by RGB images. Our approach integrates an RGB-guidance module for feature extraction from RGB inputs, then incorporates these features into the reverse diffusion process with RGB-guided residual blocks across various resolutions. This approach yields high-fidelity RAW images, enabling the creation of camera-specific RAW datasets. Our RGB2RAW experiments on four DSLR datasets demonstrate state-of-the-art performance. Moreover, RAW-Diffusion demonstrates exceptional data efficiency, achieving remarkable performance with as few as 25 training samples or even fewer. We extend our method to create BDD100K-RAW and Cityscapes-RAW datasets, revealing its effectiveness for object detection in RAW imagery, significantly reducing the amount of required RAW images.