Abstract:This short report reviews the current state of the research and methodology on theoretical and practical aspects of Artificial Neural Networks (ANN). It was prepared to gather state-of-the-art knowledge needed to construct complex, hypercomplex and fuzzy neural networks. The report reflects the individual interests of the authors and, by now means, cannot be treated as a comprehensive review of the ANN discipline. Considering the fast development of this field, it is currently impossible to do a detailed review of a considerable number of pages. The report is an outcome of the Project 'The Strategic Research Partnership for the mathematical aspects of complex, hypercomplex and fuzzy neural networks' meeting at the University of Warmia and Mazury in Olsztyn, Poland, organized in September 2022.
Abstract:The study analyzes the impact of constant and alternating magnetic fields and alternating electric fields on various growth parameters of soy plants: the germination energy and capacity, plants emergence and number, the Yield(II) of the fresh mass of seedlings, protein content, and photosynthetic parameters. Four cultivars were used: MAVKA, MERLIN, VIOLETTA, and ANUSZKA. Moreover, the advanced Machine Learning processing pipeline was proposed to distinguish the impact of physical factors on photosynthetic parameters. It is possible to distinguish exposition on different physical factors for the first three cultivars; therefore, it indicates that the EM factors have some observable effect on soy plants. Moreover, some influence of physical factors on growth parameters was observed. The use of ELM (Electromagnetic) fields had a positive impact on the germination rate in Merlin plants. The highest values were recorded for the constant magnetic field (CMF) - Merlin, and the lowest for the alternating electric field (AEF) - Violetta. An increase in terms of emergence and number of plants after seed stimulation was observed for the Mavka cultivar, except for the AEF treatment (number of plants after 30 days) (...)
Abstract:Correlation and cluster analyses (k-Means, Gaussian Mixture Models) were performed on Generation Z engagement surveys at the workplace. The clustering indicates relations between various factors that describe the engagement of employees. The most noticeable factors are a clear statement about the responsibilities at work, and challenging work. These factors are essential in practice. The results of this paper can be used in preparing better motivational systems aimed at Generation Z employees.
Abstract:The typical problem in Data Science is creating a structure that encodes the occurrence frequency of unique elements in rows and relations between different rows of a data frame. We present the probability tree abstract data structure, an extension of the decision tree, that facilitates more than two choices with assigned probabilities. Such a tree represents statistical relations between different rows of the data frame. The Probability Tree algorithmic structure is supplied with the Generator module that is a Monte Carlo generator that traverses through the tree. These two components are implemented in TreeGen Python package. The package can be used in increasing data multiplicity, compressing data preserving its statistical information, constructing hierarchical models, exploring data, and in feature extraction.