Abstract:Overlap functions are a class of aggregation functions that measure the overlapping degree between two values. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees. The choice of a total order for intervals can be significant, which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with special attention to interval-valued aggregation functions; (ii) introduce the concept of $(a,b)$-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap functions, taking into account a function that controls the width of the output interval; (iv) present and compare three construction methods for these width-limited interval-valued overlap functions.
Abstract:Connection between the theory of aggregation functions and formal concept analysis is discussed and studied, thus filling a gap in the literature by building a bridge between these two theories, one of them living in the world of data fusion, the second one in the area of data mining. We show how Galois connections can be used to describe an important class of aggregation functions preserving suprema, and, by duality, to describe aggregation functions preserving infima. Our discovered method gives an elegant and complete description of these classes. Also possible applications of our results within certain biclustering fuzzy FCA-based methods are discussed.