Abstract:Overlap functions are a class of aggregation functions that measure the overlapping degree between two values. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees. The choice of a total order for intervals can be significant, which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with special attention to interval-valued aggregation functions; (ii) introduce the concept of $(a,b)$-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap functions, taking into account a function that controls the width of the output interval; (iv) present and compare three construction methods for these width-limited interval-valued overlap functions.
Abstract:It is known that the human visual system performs a hierarchical information process in which early vision cues (or primitives) are fused in the visual cortex to compose complex shapes and descriptors. While different aspects of the process have been extensively studied, as the lens adaptation or the feature detection, some other,as the feature fusion, have been mostly left aside. In this work we elaborate on the fusion of early vision primitives using generalizations of the Choquet integral, and novel aggregation operators that have been extensively studied in recent years. We propose to use generalizations of the Choquet integral to sensibly fuse elementary edge cues, in an attempt to model the behaviour of neurons in the early visual cortex. Our proposal leads to a full-framed edge detection algorithm, whose performance is put to the test in state-of-the-art boundary detection datasets.
Abstract:In this work we extend to the interval-valued setting the notion of an overlap functions and we discuss a method which makes use of interval-valued overlap functions for constructing OWA operators with interval-valued weights. . Some properties of interval-valued overlap functions and the derived interval-valued OWA operators are analysed. We specially focus on the homogeneity and migrativity properties.