Abstract:Ranking models play a crucial role in enhancing overall accuracy of text retrieval systems. These multi-stage systems typically utilize either dense embedding models or sparse lexical indices to retrieve relevant passages based on a given query, followed by ranking models that refine the ordering of the candidate passages by its relevance to the query. This paper benchmarks various publicly available ranking models and examines their impact on ranking accuracy. We focus on text retrieval for question-answering tasks, a common use case for Retrieval-Augmented Generation systems. Our evaluation benchmarks include models some of which are commercially viable for industrial applications. We introduce a state-of-the-art ranking model, NV-RerankQA-Mistral-4B-v3, which achieves a significant accuracy increase of ~14% compared to pipelines with other rerankers. We also provide an ablation study comparing the fine-tuning of ranking models with different sizes, losses and self-attention mechanisms. Finally, we discuss challenges of text retrieval pipelines with ranking models in real-world industry applications, in particular the trade-offs among model size, ranking accuracy and system requirements like indexing and serving latency / throughput.
Abstract:Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024.