Abstract:Recent speech technologies have led to produce high quality synthesised speech due to recent advances in neural Text to Speech (TTS). However, such TTS models depend on extensive amounts of data that can be costly to produce and is hardly scalable to all existing languages, especially that seldom attention is given to low resource languages. With techniques such as knowledge transfer, the burden of creating datasets can be alleviated. In this paper, we therefore investigate two aspects; firstly, whether data from social media can be used for a small TTS dataset construction, and secondly whether cross lingual transfer learning (TL) for a low resource language can work with this type of data. In this aspect, we specifically assess to what extent multilingual modeling can be leveraged as an alternative to training on monolingual corporas. To do so, we explore how data from foreign languages may be selected and pooled to train a TTS model for a target low resource language. Our findings show that multilingual pre-training is better than monolingual pre-training at increasing the intelligibility and naturalness of the generated speech.
Abstract:The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmentation. Thus, brilliant ideas in the field of semantic segmentation with deep learning have completed the state of the art of accuracy, however this architectures become very difficult to apply in embedded systems as is the case for autonomous driving. We present a new Deep fully Convolutional Neural Network for pixel-wise semantic segmentation which we call Squeeze-SegNet. The architecture is based on Encoder-Decoder style. We use a SqueezeNet-like encoder and a decoder formed by our proposed squeeze-decoder module and upsample layer using downsample indices like in SegNet and we add a deconvolution layer to provide final multi-channel feature map. On datasets like Camvid or City-states, our net gets SegNet-level accuracy with less than 10 times fewer parameters than SegNet.