Abstract:Participant selection (PS) helps to accelerate federated learning (FL) convergence, which is essential for the practical deployment of FL over mobile devices. While most existing PS approaches focus on improving training accuracy and efficiency rather than residual energy of mobile devices, which fundamentally determines whether the selected devices can participate. Meanwhile, the impacts of mobile devices' heterogeneous wireless transmission rates on PS and FL training efficiency are largely ignored. Moreover, PS causes the staleness issue. Prior research exploits isolated functions to force long-neglected devices to participate, which is decoupled from original PS designs. In this paper, we propose a residual energy and wireless aware PS design for efficient FL training over mobile devices (REWAFL). REW AFL introduces a novel PS utility function that jointly considers global FL training utilities and local energy utility, which integrates energy consumption and residual battery energy of candidate mobile devices. Under the proposed PS utility function framework, REW AFL further presents a residual energy and wireless aware local computing policy. Besides, REWAFL buries the staleness solution into its utility function and local computing policy. The experimental results show that REW AFL is effective in improving training accuracy and efficiency, while avoiding "flat battery" of mobile devices.
Abstract:Vector-space word representations obtained from neural network models have been shown to enable semantic operations based on vector arithmetic. In this paper, we explore the existence of similar information on vector representations of images. For that purpose we define a methodology to obtain large, sparse vector representations of image classes, and generate vectors through the state-of-the-art deep learning architecture GoogLeNet for 20K images obtained from ImageNet. We first evaluate the resultant vector-space semantics through its correlation with WordNet distances, and find vector distances to be strongly correlated with linguistic semantics. We then explore the location of images within the vector space, finding elements close in WordNet to be clustered together, regardless of significant visual variances (e.g. 118 dog types). More surprisingly, we find that the space unsupervisedly separates complex classes without prior knowledge (e.g. living things). Afterwards, we consider vector arithmetics. Although we are unable to obtain meaningful results on this regard, we discuss the various problem we encountered, and how we consider to solve them. Finally, we discuss the impact of our research for cognitive systems, focusing on the role of the architecture being used.