UB, CNRS, Bordeaux INP, LaBRI
Abstract:We study extensions of expressive decidable fragments of first-order logic with circumscription, in particular the two-variable fragment FO$^2$, its extension C$^2$ with counting quantifiers, and the guarded fragment GF. We prove that if only unary predicates are minimized (or fixed) during circumscription, then decidability of logical consequence is preserved. For FO$^2$ the complexity increases from $\textrm{coNexp}$ to $\textrm{coNExp}^\textrm{NP}$-complete, for GF it (remarkably!) increases from $\textrm{2Exp}$ to $\textrm{Tower}$-complete, and for C$^2$ the complexity remains open. We also consider querying circumscribed knowledge bases whose ontology is a GF sentence, showing that the problem is decidable for unions of conjunctive queries, $\textrm{Tower}$-complete in combined complexity, and elementary in data complexity. Already for atomic queries and ontologies that are sets of guarded existential rules, however, for every $k \geq 0$ there is an ontology and query that are $k$-$\textrm{Exp}$-hard in data complexity.
Abstract:Circumscription is one of the main approaches for defining non-monotonic description logics (DLs). While the decidability and complexity of traditional reasoning tasks such as satisfiability of circumscribed DL knowledge bases (KBs) is well understood, for evaluating conjunctive queries (CQs) and unions thereof (UCQs), not even decidability had been established. In this paper, we prove decidability of (U)CQ evaluation on circumscribed DL KBs and obtain a rather complete picture of both the combined complexity and the data complexity, for DLs ranging from ALCHIO via EL to various versions of DL-Lite. We also study the much simpler atomic queries (AQs).
Abstract:Ontology-mediated query answering (OMQA) is a promising approach to data access and integration that has been actively studied in the knowledge representation and database communities for more than a decade. The vast majority of work on OMQA focuses on conjunctive queries, whereas more expressive queries that feature counting or other forms of aggregation remain largely unex-plored. In this paper, we introduce a general form of counting query, relate it to previous proposals, and study the complexity of answering such queries in the presence of DL-Lite ontologies. As it follows from existing work that query answering is intractable and often of high complexity, we consider some practically relevant restrictions, for which we establish improved complexity bounds.