Abstract:This paper addresses the Traveling Salesman Problem with Drone (TSP-D), in which a truck and drone are used to deliver parcels to customers. The objective of this problem is to either minimize the total operational cost (min-cost TSP-D) or minimize the completion time for the truck and drone (min-time TSP-D). This problem has gained a lot of attention in the last few years since it is matched with the recent trends in a new delivery method among logistics companies. To solve the TSP-D, we propose a hybrid genetic search with dynamic population management and adaptive diversity control based on a split algorithm, problem-tailored crossover and local search operators, a new restore method to advance the convergence and an adaptive penalization mechanism to dynamically balance the search between feasible/infeasible solutions. The computational results show that the proposed algorithm outperforms existing methods in terms of solution quality and improves best known solutions found in the literature. Moreover, various analyses on the impacts of crossover choice and heuristic components have been conducted to analysis further their sensitivity to the performance of our method.
Abstract:Over the past few years, unmanned aerial vehicles (UAV), also known as drones, have been adopted as part of a new logistic method in the commercial sector called "last-mile delivery". In this novel approach, they are deployed alongside trucks to deliver goods to customers to improve the quality of service and reduce the transportation cost. This approach gives rise to a new variant of the traveling salesman problem (TSP), called TSP with drone (TSP-D). A variant of this problem that aims to minimize the time at which truck and drone finish the service (or, in other words, to maximize the quality of service) was studied in the work of Murray and Chu (2015). In contrast, this paper considers a new variant of TSP-D in which the objective is to minimize operational costs including total transportation cost and one created by waste time a vehicle has to wait for the other. The problem is first formulated mathematically. Then, two algorithms are proposed for the solution. The first algorithm (TSP-LS) was adapted from the approach proposed by Murray and Chu (2015), in which an optimal TSP solution is converted to a feasible TSP-D solution by local searches. The second algorithm, a Greedy Randomized Adaptive Search Procedure (GRASP), is based on a new split procedure that optimally splits any TSP tour into a TSP-D solution. After a TSP-D solution has been generated, it is then improved through local search operators. Numerical results obtained on various instances of both objective functions with different sizes and characteristics are presented. The results show that GRASP outperforms TSP-LS in terms of solution quality under an acceptable running time.
Abstract:Constrained Optimum Path (COP) problems appear in many real-life applications, especially on communication networks. Some of these problems have been considered and solved by specific techniques which are usually difficult to extend. In this paper, we introduce a novel local search modeling for solving some COPs by local search. The modeling features the compositionality, modularity, reuse and strengthens the benefits of Constrained-Based Local Search. We also apply the modeling to the edge-disjoint paths problem (EDP). We show that side constraints can easily be added in the model. Computational results show the significance of the approach.