Abstract:Event cameras capture the motion of intensity gradients (edges) in the image plane in the form of rapid asynchronous events. When accumulated in 2D histograms, these events depict overlays of the edges in motion, consequently obscuring the spatial structure of the generating edges. Contrast maximization (CM) is an optimization framework that can reverse this effect and produce sharp spatial structures that resemble the moving intensity gradients by estimating the motion trajectories of the events. Nonetheless, CM is still an underexplored area of research with avenues for improvement. In this paper, we propose a novel hybrid approach that extends CM from uni-modal (events only) to bi-modal (events and edges). We leverage the underpinning concept that, given a reference time, optimally warped events produce sharp gradients consistent with the moving edge at that time. Specifically, we formalize a correlation-based objective to aid CM and provide key insights into the incorporation of multiscale and multireference techniques. Moreover, our edge-informed CM method yields superior sharpness scores and establishes new state-of-the-art event optical flow benchmarks on the MVSEC, DSEC, and ECD datasets.
Abstract:In this paper, we introduce a novel implicit neural network for the task of single image super-resolution at arbitrary scale factors. To do this, we represent an image as a decoding function that maps locations in the image along with their associated features to their reciprocal pixel attributes. Since the pixel locations are continuous in this representation, our method can refer to any location in an image of varying resolution. To retrieve an image of a particular resolution, we apply a decoding function to a grid of locations each of which refers to the center of a pixel in the output image. In contrast to other techniques, our dual interactive neural network decouples content and positional features. As a result, we obtain a fully implicit representation of the image that solves the super-resolution problem at (real-valued) elective scales using a single model. We demonstrate the efficacy and flexibility of our approach against the state of the art on publicly available benchmark datasets.