Abstract:Today, numerous web services with similar functionalities are available on the Internet. Users often evaluate the Quality of Service (QoS) to choose the best option among them. Predicting the QoS values of these web services is a significant challenge in the field of web services. A Canonical Polyadic (CP)-based tensor network model has proven to be efficient for predicting dynamic QoS data. However, current CP-based tensor network models do not consider the correlation of users and services in the low-dimensional latent feature space, thereby limiting model's prediction capability. To tackle this issue, this paper proposes an Extended Canonical polyadic-based Tensor Network (ECTN) model. It models the correlation of users and services via building a relation dimension between user feature and service feature in low-dimensional space, and then designs an extended CP decomposition structure to improve prediction accuracy. Experiments are conducted on two public dynamic QoS data, and the results show that compared with state-of-the-art QoS prediction models, the ECTN obtains higher prediction accuracy.
Abstract:Large-scale Dynamic Networks (LDNs) are becoming increasingly important in the Internet age, yet the dynamic nature of these networks captures the evolution of the network structure and how edge weights change over time, posing unique challenges for data analysis and modeling. A Latent Factorization of Tensors (LFT) model facilitates efficient representation learning for a LDN. But the existing LFT models are almost based on Canonical Polyadic Factorization (CPF). Therefore, this work proposes a model based on Tensor Ring (TR) decomposition for efficient representation learning for a LDN. Specifically, we incorporate the principle of single latent factor-dependent, non-negative, and multiplicative update (SLF-NMU) into the TR decomposition model, and analyze the particular bias form of TR decomposition. Experimental studies on two real LDNs demonstrate that the propose method achieves higher accuracy than existing models.