Abstract:In the domain of multimedia and multimodal processing, the efficient handling of diverse data streams such as images, video, and sensor data is paramount. Model compression and multitask learning (MTL) are crucial in this field, offering the potential to address the resource-intensive demands of processing and interpreting multiple forms of media simultaneously. However, effectively compressing a multitask model presents significant challenges due to the complexities of balancing sparsity allocation and accuracy performance across multiple tasks. To tackle these challenges, we propose AdapMTL, an adaptive pruning framework for MTL models. AdapMTL leverages multiple learnable soft thresholds independently assigned to the shared backbone and the task-specific heads to capture the nuances in different components' sensitivity to pruning. During training, it co-optimizes the soft thresholds and MTL model weights to automatically determine the suitable sparsity level at each component to achieve both high task accuracy and high overall sparsity. It further incorporates an adaptive weighting mechanism that dynamically adjusts the importance of task-specific losses based on each task's robustness to pruning. We demonstrate the effectiveness of AdapMTL through comprehensive experiments on popular multitask datasets, namely NYU-v2 and Tiny-Taskonomy, with different architectures, showcasing superior performance compared to state-of-the-art pruning methods.
Abstract:Hard parameter sharing in multi-task learning (MTL) allows tasks to share some of model parameters, reducing storage cost and improving prediction accuracy. The common sharing practice is to share bottom layers of a deep neural network among tasks while using separate top layers for each task. In this work, we revisit this common practice via an empirical study on fine-grained image classification tasks and make two surprising observations. (1) Using separate bottom-layer parameters could achieve significantly better performance than the common practice and this phenomenon holds for different number of tasks jointly trained on different backbone architectures with different quantity of task-specific parameters. (2) A multi-task model with a small proportion of task-specific parameters from bottom layers can achieve competitive performance with independent models trained on each task separately and outperform a state-of-the-art MTL framework. Our observations suggest that people rethink the current sharing paradigm and adopt the new strategy of using separate bottom-layer parameters as a stronger baseline for model design in MTL.