Abstract:Aiming to address the fast multi-object tracking for dense small object in the cluster background, we review track orientated multi-hypothesis tracking(TOMHT) with consideration of batch optimization. Employing autocorrelation based motion score test and staged hypotheses merging approach, we build our homologous hypothesis generation and management method. A new one-to-many constraint is proposed and applied to tackle the track exclusions during complex occlusions. Besides, to achieve better results, we develop a multi-appearance segmentation for detection, which exploits tree-like topological information and realizes one threshold for one object. Experimental results verify the strength of our methods, indicating speed and performance advantages of our tracker.
Abstract:In this paper, we will investigate the contribution of color names for salient object detection. Each input image is first converted to the color name space, which is consisted of 11 probabilistic channels. By exploring the topological structure relationship between the figure and the ground, we obtain a saliency map through a linear combination of a set of sequential attention maps. To overcome the limitation of only exploiting the surroundedness cue, two global cues with respect to color names are invoked for guiding the computation of another weighted saliency map. Finally, we integrate the two saliency maps into a unified framework to infer the saliency result. In addition, an improved post-processing procedure is introduced to effectively suppress the background while uniformly highlight the salient objects. Experimental results show that the proposed model produces more accurate saliency maps and performs well against 23 saliency models in terms of three evaluation metrics on three public datasets.