Abstract:Predicting influencers' views and public sentiment on social media is crucial for anticipating societal trends and guiding strategic responses. This study introduces a novel computational framework to predict opinion leaders' perspectives and the emotive reactions of the populace, addressing the inherent challenges posed by the unstructured, context-sensitive, and heterogeneous nature of online communication. Our research introduces an innovative module that starts with the automatic 5W1H (Where, Who, When, What, Why, and How) questions formulation engine, tailored to emerging news stories and trending topics. We then build a total of 60 anonymous opinion leader agents in six domains and realize the views generation based on an enhanced large language model (LLM) coupled with retrieval-augmented generation (RAG). Subsequently, we synthesize the potential views of opinion leaders and predicted the emotional responses to different events. The efficacy of our automated 5W1H module is corroborated by an average GPT-4 score of 8.83/10, indicative of high fidelity. The influencer agents exhibit a consistent performance, achieving an average GPT-4 rating of 6.85/10 across evaluative metrics. Utilizing the 'Russia-Ukraine War' as a case study, our methodology accurately foresees key influencers' perspectives and aligns emotional predictions with real-world sentiment trends in various domains.
Abstract:In the latest social networks, more and more people prefer to express their emotions in videos through text, speech, and rich facial expressions. Multimodal video emotion analysis techniques can help understand users' inner world automatically based on human expressions and gestures in images, tones in voices, and recognized natural language. However, in the existing research, the acoustic modality has long been in a marginal position as compared to visual and textual modalities. That is, it tends to be more difficult to improve the contribution of the acoustic modality for the whole multimodal emotion recognition task. Besides, although better performance can be obtained by introducing common deep learning methods, the complex structures of these training models always result in low inference efficiency, especially when exposed to high-resolution and long-length videos. Moreover, the lack of a fully end-to-end multimodal video emotion recognition system hinders its application. In this paper, we designed a fully multimodal video-to-emotion system (named FV2ES) for fast yet effective recognition inference, whose benefits are threefold: (1) The adoption of the hierarchical attention method upon the sound spectra breaks through the limited contribution of the acoustic modality and outperforms the existing models' performance on both IEMOCAP and CMU-MOSEI datasets; (2) the introduction of the idea of multi-scale for visual extraction while single-branch for inference brings higher efficiency and maintains the prediction accuracy at the same time; (3) the further integration of data pre-processing into the aligned multimodal learning model allows the significant reduction of computational costs and storage space.