Abstract:A high redundant non-holonomic humanoid mobile dual-arm manipulator system is presented in this paper where the motion planning to realize "human-like" autonomous navigation and manipulation tasks is studied. Firstly, an improved MaxiMin NSGA-II algorithm, which optimizes five objective functions to solve the problems of singularity, redundancy, and coupling between mobile base and manipulator simultaneously, is proposed to design the optimal pose to manipulate the target object. Then, in order to link the initial pose and that optimal pose, an off-line motion planning algorithm is designed. In detail, an efficient direct-connect bidirectional RRT and gradient descent algorithm is proposed to reduce the sampled nodes largely, and a geometric optimization method is proposed for path pruning. Besides, head forward behaviors are realized by calculating the reasonable orientations and assigning them to the mobile base to improve the quality of human-robot interaction. Thirdly, the extension to on-line planning is done by introducing real-time sensing, collision-test and control cycles to update robotic motion in dynamic environments. Fourthly, an EEs' via-point-based multi-objective genetic algorithm is proposed to design the "human-like" via-poses by optimizing four objective functions. Finally, numerous simulations are presented to validate the effectiveness of proposed algorithms.
Abstract:Concept hierarchy is the backbone of ontology, and the concept hierarchy acquisition has been a hot topic in the field of ontology learning. this paper proposes a hyponymy extraction method of domain ontology concept based on cascaded conditional random field(CCRFs) and hierarchy clustering. It takes free text as extracting object, adopts CCRFs identifying the domain concepts. First the low layer of CCRFs is used to identify simple domain concept, then the results are sent to the high layer, in which the nesting concepts are recognized. Next we adopt hierarchy clustering to identify the hyponymy relation between domain ontology concepts. The experimental results demonstrate the proposed method is efficient.