Imperial College London
Abstract:Encoding frequency stability constraints in the operation problem is challenging due to its complex dynamics. Recently, data-driven approaches have been proposed to learn the stability criteria offline with the trained model embedded as a constraint of online optimization. However, random sampling of stationary operation points is less efficient in generating balanced stable and unstable samples. Meanwhile, the performance of such a model is strongly dependent on the quality of the training dataset. Observing this research gap, we propose a gradient-based data generation method via forward-mode automatic differentiation. In this method, the original dynamic system is augmented with new states that represent the dynamic of sensitivities of the original states, which can be solved by invoking any ODE solver for a single time. To compensate for the contradiction between the gradient of various frequency stability criteria, gradient surgery is proposed by projecting the gradient on the normal plane of the other. In the end, we demonstrate the superior performance of the proposed sampling algorithm, compared with the unrolling differentiation and finite difference. All codes are available at https://github.com/xuwkk/frequency_sample_ad.
Abstract:Ongoing risks from climate change have impacted the livelihood of global nomadic communities, and are likely to lead to increased migratory movements in coming years. As a result, mobility considerations are becoming increasingly important in energy systems planning, particularly to achieve energy access in developing countries. Advanced Plug and Play control strategies have been recently developed with such a decentralized framework in mind, more easily allowing for the interconnection of nomadic communities, both to each other and to the main grid. In light of the above, the design and planning strategy of a mobile multi-energy supply system for a nomadic community is investigated in this work. Motivated by the scale and dimensionality of the associated uncertainties, impacting all major design and decision variables over the 30-year planning horizon, Deep Reinforcement Learning (DRL) is implemented for the design and planning problem tackled. DRL based solutions are benchmarked against several rigid baseline design options to compare expected performance under uncertainty. The results on a case study for ger communities in Mongolia suggest that mobile nomadic energy systems can be both technically and economically feasible, particularly when considering flexibility, although the degree of spatial dispersion among households is an important limiting factor. Key economic, sustainability and resilience indicators such as Cost, Equivalent Emissions and Total Unmet Load are measured, suggesting potential improvements compared to available baselines of up to 25%, 67% and 76%, respectively. Finally, the decomposition of values of flexibility and plug and play operation is presented using a variation of real options theory, with important implications for both nomadic communities and policymakers focused on enabling their energy access.