Abstract:The rapid evolution of the Smart-everything movement and Artificial Intelligence (AI) advancements have given rise to sophisticated cyber threats that traditional methods cannot counteract. Cyber threats are extremely critical in financial technology (FinTech) as a data-centric sector expected to provide 24/7 services. This paper introduces a novel and refined taxonomy of security threats in FinTech and conducts a comprehensive systematic review of defensive strategies. Through PRISMA methodology applied to 74 selected studies and topic modeling, we identified 11 central cyber threats, with 43 papers detailing them, and pinpointed 9 corresponding defense strategies, as covered in 31 papers. This in-depth analysis offers invaluable insights for stakeholders ranging from banks and enterprises to global governmental bodies, highlighting both the current challenges in FinTech and effective countermeasures, as well as directions for future research.
Abstract:This study aims to compare multiple deep learning-based forecasters for the task of predicting volatility using multivariate data. The paper evaluates a range of models, starting from simpler and shallower ones and progressing to deeper and more complex architectures. Additionally, the performance of these models is compared against naive predictions and variations of classical GARCH models. The prediction of volatility for five assets, namely S&P500, NASDAQ100, gold, silver, and oil, is specifically addressed using GARCH models, Multi-Layer Perceptrons, Recurrent Neural Networks, Temporal Convolutional Networks, and the Temporal Fusion Transformer. In the majority of cases, the Temporal Fusion Transformer, followed by variants of the Temporal Convolutional Network, outperformed classical approaches and shallow networks. These experiments were repeated, and the differences observed between the competing models were found to be statistically significant, thus providing strong encouragement for their practical application.