Abstract:Over the years, RDF streaming was explored in research and practice from many angles, resulting in a wide range of RDF stream definitions. This variety presents a major challenge in discussing and integrating streaming solutions, due to the lack of a common language. This work attempts to address this critical research gap, by systematizing RDF stream types present in the literature in a novel taxonomy. The proposed RDF Stream Taxonomy (RDF-STaX) is embodied in an OWL 2 DL ontology that follows the FAIR principles, making it readily applicable in practice. Extensive documentation and additional resources are provided, to foster the adoption of the ontology. Two realized use cases are presented, demonstrating the usefulness of the resource in discussing research works and annotating streaming datasets. Another result of this contribution is the novel nanopublications dataset, which serves as a collaborative, living state-of-the-art review of RDF streaming. The aim of RDF-STaX is to address a real need of the community for a better way to systematize and describe RDF streams. The resource is designed to help drive innovation in RDF streaming, by fostering scientific discussion, cooperation, and tool interoperability.
Abstract:Detecting Personal Protective Equipment in images and video streams is a relevant problem in ensuring the safety of construction workers. In this contribution, an architecture enabling live image recognition of such equipment is proposed. The solution is deployable in two settings -- edge-cloud and edge-only. The system was tested on an active construction site, as a part of a larger scenario, within the scope of the ASSIST-IoT H2020 project. To determine the feasibility of the edge-only variant, a model for counting people wearing safety helmets was developed using the YOLOX method. It was found that an edge-only deployment is possible for this use case, given the hardware infrastructure available on site. In the preliminary evaluation, several important observations were made, that are crucial to the further development and deployment of the system. Future work will include an in-depth investigation of performance aspects of the two architecture variants.
Abstract:Reusing ontologies in practice is still very challenging, especially when multiple ontologies are involved. Moreover, despite recent advances, systematic ontology quality assurance remains a difficult problem. In this work, the quality of thirty biomedical ontologies, and the Computer Science Ontology, are investigated from the perspective of a practical use case. Special scrutiny is given to cross-ontology references, which are vital for combining ontologies. Diverse methods to detect the issues are proposed, including natural language processing and network analysis. Moreover, several suggestions for improving ontologies and their quality assurance processes are presented. It is argued that while the advancing automatic tools for ontology quality assurance are crucial for ontology improvement, they will not solve the problem entirely. It is ontology reuse that is the ultimate method for continuously verifying and improving ontology quality, as well as for guiding its future development. Many issues can be found and fixed only through practical and diverse ontology reuse scenarios.
Abstract:The vast body of scientific publications presents an increasing challenge of finding those that are relevant to a given research question, and making informed decisions on their basis. This becomes extremely difficult without the use of automated tools. Here, one possible area for improvement is automatic classification of publication abstracts according to their topic. This work introduces a novel, knowledge base-oriented publication classifier. The proposed method focuses on achieving scalability and easy adaptability to other domains. Classification speed and accuracy are shown to be satisfactory, in the very demanding field of food safety. Further development and evaluation of the method is needed, as the proposed approach shows much potential.