Abstract:In this paper, we investigate the robustness of an LSTM neural network against noise injection attacks for electric load forecasting in an ideal microgrid. The performance of the LSTM model is investigated under a black-box Gaussian noise attack with different SNRs. It is assumed that attackers have just access to the input data of the LSTM model. The results show that the noise attack affects the performance of the LSTM model. The load prediction means absolute error (MAE) is 0.047 MW for a healthy prediction, while this value increases up to 0.097 MW for a Gaussian noise insertion with SNR= 6 dB. To robustify the LSTM model against noise attack, a low-pass filter with optimal cut-off frequency is applied at the model's input to remove the noise attack. The filter performs better in case of noise with lower SNR and is less promising for small noises.
Abstract:Wireless connections are a communication channel used to support different applications in our life such as microwave connections, mobile cellular networks, and intelligent transportation systems. The wireless communication channels are affected by different weather factors such as rain, snow, fog, dust, and sand. This effect is more evident in the high frequencies of the millimeter-wave (mm-wave) band. Recently, the 5G opened the door to support different applications with high speed and good quality. A recent study investigates the effect of rain and snow on the 5G communication channel to reduce the challenge of using high millimeter-wave frequencies. This research investigates the impact of dust and sand on the communication channel of 5G mini links using Mie scattering model to estimate the propagating wave's attenuation by computing the free space loss of a dusty region. Also, the cross-polarization of the propagating wave with dust and sand is taken into account at different distances of the propagating length. Two kinds of mini links, ML-6363, and ML-6352, are considered to demonstrate the effect of dust and sand in these specific operating frequency bands. The 73.5 GHz (V-band) and (21.5GHz (K-band) are the ML-6352 and ML-6363 radio frequency, respectively. Also, signal depolarization is another important radio frequency transmission parameter that is considered heroin. The numerical and simulation results show that the 5G ML-6352 is more effect by dust and sand than ML6363. The 5G toolbox is used to build the communication system and simulate the effect of the dust and sand on the different frequency bands.
Abstract:Operation in a real world traffic requires autonomous vehicles to be able to plan their motion in complex environments (multiple moving participants). Planning through such environment requires the right search space to be provided for the trajectory or maneuver planners so that the safest motion for the ego vehicle can be identified. Given the current states of the environment and its participants, analyzing the risks based on the predicted trajectories of all the traffic participants provides the necessary search space for the planning of motion. This paper provides a fresh taxonomy of safety / risks that an autonomous vehicle should be able to handle while navigating through traffic. It provides a reference system architecture that needs to be implemented as well as describes a novel way of identifying and predicting the behaviors of the traffic participants using classic Multi Model Adaptive Estimation (MMAE). Preliminary simulation results of the implemented model are included.