Abstract:This research considers Bayesian decision-analytic approaches toward the traversal of an uncertain graph. Namely, a traveler progresses over a graph in which rewards are gained upon a node's first visit and costs are incurred for every edge traversal. The traveler knows the graph's adjacency matrix and his starting position but does not know the rewards and costs. The traveler is a Bayesian who encodes his beliefs about these values using a Gaussian process prior and who seeks to maximize his expected utility over these beliefs. Adopting a decision-analytic perspective, we develop sequential decision-making solution strategies for this coupled information-collection and network-routing problem. We show that the problem is NP-Hard and derive properties of the optimal walk. These properties provide heuristics for the traveler's problem that balance exploration and exploitation. We provide a practical case study focused on the use of unmanned aerial systems for public safety and empirically study policy performance in myriad Erdos-Renyi settings.
Abstract:The overwhelming success of GPT-4 in early 2023 highlighted the transformative potential of large language models (LLMs) across various sectors, including national security. This article explores the implications of LLM integration within national security contexts, analyzing their potential to revolutionize information processing, decision-making, and operational efficiency. Whereas LLMs offer substantial benefits, such as automating tasks and enhancing data analysis, they also pose significant risks, including hallucinations, data privacy concerns, and vulnerability to adversarial attacks. Through their coupling with decision-theoretic principles and Bayesian reasoning, LLMs can significantly improve decision-making processes within national security organizations. Namely, LLMs can facilitate the transition from data to actionable decisions, enabling decision-makers to quickly receive and distill available information with less manpower. Current applications within the US Department of Defense and beyond are explored, e.g., the USAF's use of LLMs for wargaming and automatic summarization, that illustrate their potential to streamline operations and support decision-making. However, these applications necessitate rigorous safeguards to ensure accuracy and reliability. The broader implications of LLM integration extend to strategic planning, international relations, and the broader geopolitical landscape, with adversarial nations leveraging LLMs for disinformation and cyber operations, emphasizing the need for robust countermeasures. Despite exhibiting "sparks" of artificial general intelligence, LLMs are best suited for supporting roles rather than leading strategic decisions. Their use in training and wargaming can provide valuable insights and personalized learning experiences for military personnel, thereby improving operational readiness.