Abstract:We address the problem of learning a decision policy from observational data of past decisions in contexts with features and associated outcomes. The past policy maybe unknown and in safety-critical applications, such as medical decision support, it is of interest to learn robust policies that reduce the risk of outcomes with high costs. In this paper, we develop a method for learning policies that reduce tails of the cost distribution at a specified level and, moreover, provide a statistically valid bound on the cost of each decision. These properties are valid under finite samples -- even in scenarios with uneven or no overlap between features for different decisions in the observed data -- by building on recent results in conformal prediction. The performance and statistical properties of the proposed method are illustrated using both real and synthetic data.
Abstract:We consider a general statistical learning problem where an unknown fraction of the training data is corrupted. We develop a robust learning method that only requires specifying an upper bound on the corrupted data fraction. The method is formulated as a risk minimization problem that can be solved using a blockwise coordinate descent algorithm. We demonstrate the wide range applicability of the method, including regression, classification, unsupervised learning and classic parameter estimation, with state-of-the-art performance.