Abstract:Generating queries corresponding to natural language questions is a long standing problem. Traditional methods lack language flexibility, while newer sequence-to-sequence models require large amount of data. Schema-agnostic sequence-to-sequence models can be fine-tuned for a specific schema using a small dataset but these models have relatively low accuracy. We present a method that transforms the query generation problem into an intent classification and slot filling problem. This method can work using small datasets. For questions similar to the ones in the training dataset, it produces complex queries with high accuracy. For other questions, it can use a template-based approach or predict query pieces to construct the queries, still at a higher accuracy than sequence-to-sequence models. On a real-world dataset, a schema fine-tuned state-of-the-art generative model had 60\% exact match accuracy for the query generation task, while our method resulted in 92\% exact match accuracy.
Abstract:To access data stored in relational databases, users need to understand the database schema and write a query using a query language such as SQL. To simplify this task, text-to-SQL models attempt to translate a user's natural language question to corresponding SQL query. Recently, several generative text-to-SQL models have been developed. We propose a novel discriminative re-ranker to improve the performance of generative text-to-SQL models by extracting the best SQL query from the beam output predicted by the text-to-SQL generator, resulting in improved performance in the cases where the best query was in the candidate list, but not at the top of the list. We build the re-ranker as a schema agnostic BERT fine-tuned classifier. We analyze relative strengths of the text-to-SQL and re-ranker models across different query hardness levels, and suggest how to combine the two models for optimal performance. We demonstrate the effectiveness of the re-ranker by applying it to two state-of-the-art text-to-SQL models, and achieve top 4 score on the Spider leaderboard at the time of writing this article.