Abstract:Blanking processes belong to the most widely used manufacturing techniques due to their economic efficiency. Their economic viability depends to a large extent on the resulting product quality and the associated customer satisfaction as well as on possible downtimes. In particular, the occurrence of increased tool wear reduces the product quality and leads to downtimes, which is why considerable research has been carried out in recent years with regard to wear detection. While processes have widely been monitored based on force and acceleration signals, a new approach is pursued in this paper. Blanked workpieces manufactured by punches with 16 different wear states are photographed and then used as inputs for Deep Convolutional Neural Networks to classify wear states. The results show that wear states can be predicted with surprisingly high accuracy, opening up new possibilities and research opportunities for tool wear monitoring of blanking processes.
Abstract:In engineering applications almost all processes are described with the aid of models. Especially forming machines heavily rely on mathematical models for control and condition monitoring. Inaccuracies during the modeling, manufacturing and assembly of these machines induce model uncertainty which impairs the controller's performance. In this paper we propose an approach to identify model uncertainty using parameter identification and optimal design of experiments. The experimental setup is characterized by optimal sensor positions such that specific model parameters can be determined with minimal variance. This allows for the computation of confidence regions, in which the real parameters or the parameter estimates from different test sets have to lie. We claim that inconsistencies in the estimated parameter values, considering their approximated confidence ellipsoids as well, cannot be explained by data or parameter uncertainty but are indicators of model uncertainty. The proposed method is demonstrated using a component of the 3D Servo Press, a multi-technology forming machine that combines spindles with eccentric servo drives.