Abstract:Deep reinforcement learning (DRL) has had success in virtual and simulated domains, but due to key differences between simulated and real-world environments, DRL-trained policies have had limited success in real-world applications. To assist researchers to bridge the \textit{sim-to-real gap}, in this paper, we describe a low-cost physical inverted pendulum apparatus and software environment for exploring sim-to-real DRL methods. In particular, the design of our apparatus enables detailed examination of the delays that arise in physical systems when sensing, communicating, learning, inferring and actuating. Moreover, we wish to improve access to educational systems, so our apparatus uses readily available materials and parts to reduce cost and logistical barriers. Our design shows how commercial, off-the-shelf electronics and electromechanical and sensor systems, combined with common metal extrusions, dowel and 3D printed couplings provide a pathway for affordable physical DRL apparatus. The physical apparatus is complemented with a simulated environment implemented using a high-fidelity physics engine and OpenAI Gym interface.
Abstract:In this work we present Deep Reinforcement Learning (DRL) training of directional locomotion for low-cost quadrupedal robots in the real world. In particular, we exploit randomization of heading that the robot must follow to foster exploration of action-state transitions most useful for learning both forward locomotion as well as course adjustments. Changing the heading in episode resets to current yaw plus a random value drawn from a normal distribution yields policies able to follow complex trajectories involving frequent turns in both directions as well as long straight-line stretches. By repeatedly changing the heading, this method keeps the robot moving within the training platform and thus reduces human involvement and need for manual resets during the training. Real world experiments on a custom-built, low-cost quadruped demonstrate the efficacy of our method with the robot successfully navigating all validation tests. When trained with other approaches, the robot only succeeds in forward locomotion test and fails when turning is required.