Abstract:The histopathology analysis is of great significance for the diagnosis and prognosis of cancers, however, it has great challenges due to the enormous heterogeneity of gigapixel whole slide images (WSIs) and the intricate representation of pathological features. However, recent methods have not adequately exploited geometrical representation in WSIs which is significant in disease diagnosis. Therefore, we proposed a novel weakly-supervised framework, Geometry-Aware Transformer (GOAT), in which we urge the model to pay attention to the geometric characteristics within the tumor microenvironment which often serve as potent indicators. In addition, a context-aware attention mechanism is designed to extract and enhance the morphological features within WSIs.
Abstract:In the field of scientific computing, many problem-solving approaches tend to focus only on the process and final outcome, even in AI for science, there is a lack of deep multimodal information mining behind the data, missing a multimodal framework akin to that in the image-text domain. In this paper, we take Symbolic Regression(SR) as our focal point and, drawing inspiration from the BLIP model in the image-text domain, propose a scientific computing multimodal framework based on Function Images (Funcimg) and Operation Tree Sequence (OTS), named Bootstrapping OTS-Funcimg Pre-training Model (Botfip). In SR experiments, we validate the advantages of Botfip in low-complexity SR problems, showcasing its potential. As a MED framework, Botfip holds promise for future applications in a broader range of scientific computing problems.