Abstract:Click-through rate (CTR) estimation is a fundamental task in personalized advertising and recommender systems and it's important for ranking models to effectively capture complex high-order features.Inspired by the success of ELMO and Bert in NLP field, which dynamically refine word embedding according to the context sentence information where the word appears, we think it's also important to dynamically refine each feature's embedding layer by layer according to the context information contained in input instance in CTR estimation tasks. We can effectively capture the useful feature interactions for each feature in this way. In this paper, We propose a novel CTR Framework named ContextNet that implicitly models high-order feature interactions by dynamically refining each feature's embedding according to the input context. Specifically, ContextNet consists of two key components: contextual embedding module and ContextNet block. Contextual embedding module aggregates contextual information for each feature from input instance and ContextNet block maintains each feature's embedding layer by layer and dynamically refines its representation by merging contextual high-order interaction information into feature embedding. To make the framework specific, we also propose two models(ContextNet-PFFN and ContextNet-SFFN) under this framework by introducing linear contextual embedding network and two non-linear mapping sub-network in ContextNet block. We conduct extensive experiments on four real-world datasets and the experiment results demonstrate that our proposed ContextNet-PFFN and ContextNet-SFFN model outperform state-of-the-art models such as DeepFM and xDeepFM significantly.
Abstract:Normalization has become one of the most fundamental components in many deep neural networks for machine learning tasks while deep neural network has also been widely used in CTR estimation field. Among most of the proposed deep neural network models, few model utilize normalization approaches. Though some works such as Deep & Cross Network (DCN) and Neural Factorization Machine (NFM) use Batch Normalization in MLP part of the structure, there isn't work to thoroughly explore the effect of the normalization on the DNN ranking systems. In this paper, we conduct a systematic study on the effect of widely used normalization schemas by applying the various normalization approaches to both feature embedding and MLP part in DNN model. Extensive experiments are conduct on three real-world datasets and the experiment results demonstrate that the correct normalization significantly enhances model's performance. We also propose a new and effective normalization approaches based on LayerNorm named variance only LayerNorm(VO-LN) in this work. A normalization enhanced DNN model named NormDNN is also proposed based on the above-mentioned observation. As for the reason why normalization works for DNN models in CTR estimation, we find that the variance of normalization plays the main role and give an explanation in this work.