Abstract:With the rapid development of green energy, the efficiency and reliability of wind turbines are key to sustainable renewable energy production. For that reason, this paper presents a novel intelligent system architecture designed for the dynamic collection and real-time processing of visual data to detect defects in wind turbines. The system employs advanced algorithms within a distributed framework to enhance inspection accuracy and efficiency using unmanned aerial vehicles (UAVs) with integrated visual and thermal sensors. An experimental study conducted at the "Staryi Sambir-1" wind power plant in Ukraine demonstrates the system's effectiveness, showing a significant improvement in defect detection accuracy (up to 94%) and a reduction in inspection time per turbine (down to 1.5 hours) compared to traditional methods. The results show that the proposed intelligent system architecture provides a scalable and reliable solution for wind turbine maintenance, contributing to the durability and performance of renewable energy infrastructure.
Abstract:The segmentation and classification of cardiac magnetic resonance imaging are critical for diagnosing heart conditions, yet current approaches face challenges in accuracy and generalizability. In this study, we aim to further advance the segmentation and classification of cardiac magnetic resonance images by introducing a novel deep learning-based approach. Using a multi-stage process with U-Net and ResNet models for segmentation, followed by Gaussian smoothing, the method improved segmentation accuracy, achieving a Dice coefficient of 0.974 for the left ventricle and 0.947 for the right ventricle. For classification, a cascade of deep learning classifiers was employed to distinguish heart conditions, including hypertrophic cardiomyopathy, myocardial infarction, and dilated cardiomyopathy, achieving an average accuracy of 97.2%. The proposed approach outperformed existing models, enhancing segmentation accuracy and classification precision. These advancements show promise for clinical applications, though further validation and interpretation across diverse imaging protocols is necessary.
Abstract:The inspection of wind turbine blades (WTBs) is crucial for ensuring their structural integrity and operational efficiency. Traditional inspection methods can be dangerous and inefficient, prompting the use of unmanned aerial vehicles (UAVs) that access hard-to-reach areas and capture high-resolution imagery. In this study, we address the challenge of enhancing defect detection on WTBs by integrating thermal and RGB images obtained from UAVs. We propose a multispectral image composition method that combines thermal and RGB imagery through spatial coordinate transformation, key point detection, binary descriptor creation, and weighted image overlay. Using a benchmark dataset of WTB images annotated for defects, we evaluated several state-of-the-art object detection models. Our results show that composite images significantly improve defect detection efficiency. Specifically, the YOLOv8 model's accuracy increased from 91% to 95%, precision from 89% to 94%, recall from 85% to 92%, and F1-score from 87% to 93%. The number of false positives decreased from 6 to 3, and missed defects reduced from 5 to 2. These findings demonstrate that integrating thermal and RGB imagery enhances defect detection on WTBs, contributing to improved maintenance and reliability.
Abstract:This paper proposes a novel approach to semantic ontology alignment using contextual descriptors. A formalization was developed that enables the integration of essential and contextual descriptors to create a comprehensive knowledge model. The hierarchical structure of the semantic approach and the mathematical apparatus for analyzing potential conflicts between concepts, particularly in the example of "Transparency" and "Privacy" in the context of artificial intelligence, are demonstrated. Experimental studies showed a significant improvement in ontology alignment metrics after the implementation of contextual descriptors, especially in the areas of privacy, responsibility, and freedom & autonomy. The application of contextual descriptors achieved an average overall improvement of approximately 4.36%. The results indicate the effectiveness of the proposed approach for more accurately reflecting the complexity of knowledge and its contextual dependence.
Abstract:The research presents an automated method for determining the trajectory of an unmanned aerial vehicle (UAV) for wind turbine inspection. The proposed method enables efficient data collection from multiple wind installations using UAV optical sensors, considering the spatial positioning of blades and other components of the wind energy installation. It includes component segmentation of the wind energy unit (WEU), determination of the blade pitch angle, and generation of optimal flight trajectories, considering safe distances and optimal viewing angles. The results of computational experiments have demonstrated the advantage of the proposed method in monitoring WEU, achieving a 78% reduction in inspection time, a 17% decrease in total trajectory length, and a 6% increase in average blade surface coverage compared to traditional methods. Furthermore, the process minimizes the average deviation from the optimal trajectory by 68%, indicating its high accuracy and ability to compensate for external influences.