Abstract:With an increasing share of the electricity grid relying on wind to provide generating capacity and energy, there is an expanding global need for historically accurate high-resolution wind data. Conventional downscaling methods for generating these data have a high computational burden and require extensive tuning for historical accuracy. In this work, we present a novel deep learning-based spatiotemporal downscaling method, using generative adversarial networks (GANs), for generating historically accurate high-resolution wind resource data from the European Centre for Medium-Range Weather Forecasting Reanalysis version 5 data (ERA5). We achieve results comparable in historical accuracy and spatiotemporal variability to conventional downscaling by training a GAN model with ERA5 low-resolution input and high-resolution targets from the Wind Integration National Dataset, while reducing computational costs over dynamical downscaling by two orders of magnitude. Spatiotemporal cross-validation shows low error and high correlations with observations and excellent agreement with holdout data across distributions of physical metrics. We apply this approach to downscale 30-km hourly ERA5 data to 2-km 5-minute wind data for January 2000 through December 2023 at multiple hub heights over Eastern Europe. Uncertainty is estimated over the period with observational data by additionally downscaling the members of the European Centre for Medium-Range Weather Forecasting Ensemble of Data Assimilations. Comparisons against observational data from the Meteorological Assimilation Data Ingest System and multiple wind farms show comparable performance to the CONUS validation. This 24-year data record is the first member of the super resolution for renewable energy resource data with wind from reanalysis data dataset (Sup3rWind).
Abstract:The recent growth in renewable energy development in the United States has been accompanied by a simultaneous surge in renewable energy siting ordinances. These zoning laws play a critical role in dictating the placement of wind and solar resources that are critical for achieving low-carbon energy futures. In this context, efficient access to and management of siting ordinance data becomes imperative. The National Renewable Energy Laboratory (NREL) recently introduced a public wind and solar siting database to fill this need. This paper presents a method for harnessing Large Language Models (LLMs) to automate the extraction of these siting ordinances from legal documents, enabling this database to maintain accurate up-to-date information in the rapidly changing energy policy landscape. A novel contribution of this research is the integration of a decision tree framework with LLMs. Our results show that this approach is 85 to 90% accurate with outputs that can be used directly in downstream quantitative modeling. We discuss opportunities to use this work to support similar large-scale policy research in the energy sector. By unlocking new efficiencies in the extraction and analysis of legal documents using LLMs, this study enables a path forward for automated large-scale energy policy research.
Abstract:Radio frequency interference (RFI) mitigation remains a major challenge in the search for radio technosignatures. Typical mitigation strategies include a direction-of-origin (DoO) filter, where a signal is classified as RFI if it is detected in multiple directions on the sky. These classifications generally rely on estimates of signal properties, such as frequency and frequency drift rate. Convolutional neural networks (CNNs) offer a promising complement to existing filters because they can be trained to analyze dynamic spectra directly, instead of relying on inferred signal properties. In this work, we compiled several data sets consisting of labeled pairs of images of dynamic spectra, and we designed and trained a CNN that can determine whether or not a signal detected in one scan is also present in another scan. This CNN-based DoO filter outperforms both a baseline 2D correlation model as well as existing DoO filters over a range of metrics, with precision and recall values of 99.15% and 97.81%, respectively. We found that the CNN reduces the number of signals requiring visual inspection after the application of traditional DoO filters by a factor of 6-16 in nominal situations.