Abstract:This booklet on Active Assisted Living (AAL) technologies has been created as part of the GoodBrother COST Action, which has run from 2020 to 2024. COST Actions are European research programs that promote collaboration across borders, uniting researchers, professionals, and institutions to address key societal challenges. GoodBrother focused on ethical and privacy concerns surrounding video and audio monitoring in care settings. The aim was to ensure that while AAL technologies help older adults and vulnerable individuals, their privacy and data protection rights remain a top priority. This booklet is designed to guide you through the role that AAL technologies play in improving the quality of life for older adults, caregivers, and people with disabilities. AAL technologies offer tools for those facing cognitive or physical challenges. They can enhance independence, assist with daily routines, and promote a safer living environment. However, the rise of these technologies also brings important questions about data protection and user autonomy. This resource is intended for a wide audience, including end users, caregivers, healthcare professionals, and policymakers. It provides practical guidance on integrating AAL technologies into care settings while safeguarding privacy and ensuring ethical use. The insights offered here aim to empower users and caregivers to make informed choices that enhance both the quality of care and respect for personal autonomy.
Abstract:Human skin segmentation is a crucial task in computer vision and biometric systems, yet it poses several challenges such as variability in skin color, pose, and illumination. This paper presents a robust data-driven skin segmentation method for a single image that addresses these challenges through the integration of contextual information and efficient network design. In addition to robustness and accuracy, the integration into real-time systems requires a careful balance between computational power, speed, and performance. The proposed method incorporates two attention modules, Body Attention and Skin Attention, that utilize contextual information to improve segmentation results. These modules draw attention to the desired areas, focusing on the body boundaries and skin pixels, respectively. Additionally, an efficient network architecture is employed in the encoder part to minimize computational power while retaining high performance. To handle the issue of noisy labels in skin datasets, the proposed method uses a weakly supervised training strategy, relying on the Skin Attention module. The results of this study demonstrate that the proposed method is comparable to, or outperforms, state-of-the-art methods on benchmark datasets.