Abstract:Simulating detector responses is a crucial part of understanding the inner-workings of particle collisions in the Large Hadron Collider at CERN. The current reliance on statistical Monte-Carlo simulations strains CERN's computational grid, underscoring the urgency for more efficient alternatives. Addressing these challenges, recent proposals advocate for generative machine learning methods. In this study, we present an innovative deep learning simulation approach tailored for the proton Zero Degree Calorimeter in the ALICE experiment. Leveraging a Generative Adversarial Network model with Selective Diversity Increase loss, we directly simulate calorimeter responses. To enhance its capabilities in modeling a broad range of calorimeter response intensities, we expand the SDI-GAN architecture with additional regularization. Moreover, to improve the spatial fidelity of the generated data, we introduce an auxiliary regressor network. Our method offers a significant speedup when comparing to the traditional Monte-Carlo based approaches.