Abstract:Hyperspectral unmixing is an important remote sensing task with applications including material identification and analysis. Characteristic spectral features make many pure materials identifiable from their visible-to-infrared spectra, but quantifying their presence within a mixture is a challenging task due to nonlinearities and factors of variation. In this paper, spectral variation is considered from a physics-based approach and incorporated into an end-to-end spectral unmixing algorithm via differentiable programming. The dispersion model is introduced to simulate realistic spectral variation, and an efficient method to fit the parameters is presented. Then, this dispersion model is utilized as a generative model within an analysis-by-synthesis spectral unmixing algorithm. Further, a technique for inverse rendering using a convolutional neural network to predict parameters of the generative model is introduced to enhance performance and speed when training data is available. Results achieve state-of-the-art on both infrared and visible-to-near-infrared (VNIR) datasets, and show promise for the synergy between physics-based models and deep learning in hyperspectral unmixing in the future.
Abstract:We consider the problem of recovering a complex vector $\mathbf{x}\in \mathbb{C}^n$ from $m$ quadratic measurements $\{\langle A_i\mathbf{x}, \mathbf{x}\rangle\}_{i=1}^m$. This problem, known as quadratic feasibility, encompasses the well known phase retrieval problem and has applications in a wide range of important areas including power system state estimation and x-ray crystallography. In general, not only is the the quadratic feasibility problem NP-hard to solve, but it may in fact be unidentifiable. In this paper, we establish conditions under which this problem becomes {identifiable}, and further prove isometry properties in the case when the matrices $\{A_i\}_{i=1}^m$ are Hermitian matrices sampled from a complex Gaussian distribution. Moreover, we explore a nonconvex {optimization} formulation of this problem, and establish salient features of the associated optimization landscape that enables gradient algorithms with an arbitrary initialization to converge to a \emph{globally optimal} point with a high probability. Our results also reveal sample complexity requirements for successfully identifying a feasible solution in these contexts.