Abstract:The advent of the digital age has driven the development of coherent optical modems -- devices that modulate the amplitude and phase of light in multiple polarization states. These modems transmit data through fiber optic cables that are thousands of kilometers in length at data rates exceeding one terabit per second. This remarkable technology is made possible through near-THz-rate programmable control and sensing of the full optical wavefield. While coherent optical modems form the backbone of telecommunications networks around the world, their extraordinary capabilities also provide unique opportunities for imaging. Here, we introduce full-wavefield lidar: a new imaging modality that repurposes off-the-shelf coherent optical modems to simultaneously measure distance, axial velocity, and polarization. We demonstrate this modality by combining a 74 GHz-bandwidth coherent optical modem with free-space coupling optics and scanning mirrors. We develop a time-resolved image formation model for this system and formulate a maximum-likelihood reconstruction algorithm to recover depth, velocity, and polarization information at each scene point from the modem's raw transmitted and received symbols. Compared to existing lidars, full-wavefield lidar promises improved mm-scale ranging accuracy from brief, microsecond exposure times, reliable velocimetry, and robustness to intererence from ambient light or other lidar signals.
Abstract:Neural radiance fields (NeRFs) have become a ubiquitous tool for modeling scene appearance and geometry from multiview imagery. Recent work has also begun to explore how to use additional supervision from lidar or depth sensor measurements in the NeRF framework. However, previous lidar-supervised NeRFs focus on rendering conventional camera imagery and use lidar-derived point cloud data as auxiliary supervision; thus, they fail to incorporate the underlying image formation model of the lidar. Here, we propose a novel method for rendering transient NeRFs that take as input the raw, time-resolved photon count histograms measured by a single-photon lidar system, and we seek to render such histograms from novel views. Different from conventional NeRFs, the approach relies on a time-resolved version of the volume rendering equation to render the lidar measurements and capture transient light transport phenomena at picosecond timescales. We evaluate our method on a first-of-its-kind dataset of simulated and captured transient multiview scans from a prototype single-photon lidar. Overall, our work brings NeRFs to a new dimension of imaging at transient timescales, newly enabling rendering of transient imagery from novel views. Additionally, we show that our approach recovers improved geometry and conventional appearance compared to point cloud-based supervision when training on few input viewpoints. Transient NeRFs may be especially useful for applications which seek to simulate raw lidar measurements for downstream tasks in autonomous driving, robotics, and remote sensing.