Abstract:The rapid growth of the Industry 4.0 paradigm is increasing the pressure to develop effective automated monitoring systems. Artificial Intelligence (AI) is a convenient tool to improve the efficiency of industrial processes while reducing errors and waste. In fact, it allows the use of real-time data to increase the effectiveness of monitoring systems, minimize errors, make the production process more sustainable, and save costs. In this paper, a novel automatic monitoring system is proposed in the context of production process of plastic consumables used in analysis laboratories, with the aim to increase the effectiveness of the control process currently performed by a human operator. In particular, we considered the problem of classifying the presence or absence of a transparent anticoagulant substance inside test tubes. Specifically, a hand-designed deep network model is used and compared with some state-of-the-art models for its ability to categorize different images of vials that can be either filled with the anticoagulant or empty. Collected results indicate that the proposed approach is competitive with state-of-the-art models in terms of accuracy. Furthermore, we increased the complexity of the task by training the models on the ability to discriminate not only the presence or absence of the anticoagulant inside the vial, but also the size of the test tube. The analysis performed in the latter scenario confirms the competitiveness of our approach. Moreover, our model is remarkably superior in terms of its generalization ability and requires significantly fewer resources. These results suggest the possibility of successfully implementing such a model in the production process of a plastic consumables company.
Abstract:The mutual relationship between evolution and learning is a controversial argument among the artificial intelligence and neuro-evolution communities. After more than three decades, there is still no common agreement on the matter. In this paper the author investigates whether combining learning and evolution permits to find better solutions than those discovered by evolution alone. More specifically, the author presents a series of empirical studies that highlight some specific conditions determining the success of such a combination, like the introduction of noise during the learning and selection processes. Results are obtained in two qualitatively different domains, where agent/environment interactions are minimal or absent.
Abstract:We introduce a method that permits to co-evolve the body and the control properties of robots. It can be used to adapt the morphological traits of robots with a hand-designed morphological bauplan or to evolve the morphological bauplan as well. Our results indicate that robots with co-adapted body and control traits outperform robots with fixed hand-designed morphologies. Interestingly, the advantage is not due to the selection of better morphologies but rather to the mutual scaffolding process that results from the possibility to co-adapt the morphological traits to the control traits and vice versa. Our results also demonstrate that morphological variations do not necessarily have destructive effects on robot skills.
Abstract:We analyze the efficacy of modern neuro-evolutionary strategies for continuous control optimization. Overall the results collected on a wide variety of qualitatively different benchmark problems indicate that these methods are generally effective and scale well with respect to the number of parameters and the complexity of the problem. We demonstrate the importance of using suitable fitness functions or reward criteria since functions that are optimal for reinforcement learning algorithms tend to be sub-optimal for evolutionary strategies and vice versa. Finally, we provide an analysis of the role of hyper-parameters that demonstrates the importance of normalization techniques, especially in complex problems.
Abstract:We propose a method for evolving solutions that are robust with respect to variations of the environmental conditions (i.e. that can operate effectively in new conditions immediately, without the need to adapt to variations). The obtained results show how the method proposed is effective and computational tractable. It permits to improve performance on an extended version of the double-pole balancing problem, to outperform the best available human-designed controllers on a car racing problem, and to generate rather effective solutions for a swarm robotic problem. The comparison of different algorithms indicates that the CMA-ES and xNES methods, that operate by optimizing a distribution of parameters, represent the best options for the evolution of robust neural network controllers.
Abstract:We show how the characteristics of the evolutionary algorithm influence the evolvability of candidate solutions, i.e. the propensity of evolving individuals to generate better solutions as a result of genetic variation. More specifically, (1+{\lambda}) evolutionary strategies largely outperform ({\mu}+1) evolutionary strategies in the context of the evolution of digital circuits --- a domain characterized by a high level of neutrality. This difference is due to the fact that the competition for robustness to mutations among the circuits evolved with ({\mu}+1) evolutionary strategies leads to the selection of phenotypically simple but low evolvable circuits. These circuits achieve robustness by minimizing the number of functional genes rather than by relying on redundancy or degeneracy to buffer the effects of mutations. The analysis of these factors enabled us to design a new evolutionary algorithm, named Parallel Stochastic Hill Climber (PSHC), which outperforms the other two methods considered.