Abstract:In this article, we propose a novel oversampling algorithm to increase the number of instances of minority class in an imbalanced dataset. We select two instances, Proxima and Orion, from the set of all minority class instances, based on a combination of relative distance weights and density estimation of majority class instances. Furthermore, the q-Gaussian distribution is used as a weighting mechanism to produce new synthetic instances to improve the representation and diversity. We conduct a comprehensive experiment on 42 datasets extracted from KEEL software and eight datasets from the UCI ML repository to evaluate the usefulness of the proposed (PO-QG) algorithm. Wilcoxon signed-rank test is used to compare the proposed algorithm with five other existing algorithms. The test results show that the proposed technique improves the overall classification performance. We also demonstrate the PO-QG algorithm to a dataset of Indian patients with sarcopenia.
Abstract:Autism, also known as Autism Spectrum Disorder (or ASD), is a neurological disorder. Its main symptoms include difficulty in (verbal and/or non-verbal) communication, and rigid/repetitive behavior. These symptoms are often indistinguishable from a normal (control) individual, due to which this disorder remains undiagnosed in early childhood leading to delayed treatment. Since the learning curve is steep during the initial age, an early diagnosis of autism could allow to take adequate interventions at the right time, which might positively affect the growth of an autistic child. Further, the traditional methods of autism diagnosis require multiple visits to a specialized psychiatrist, however this process can be time-consuming. In this paper, we present a learning based approach to automate autism diagnosis using simple and small action video clips of subjects. This task is particularly challenging because the amount of annotated data available is small, and the variations among samples from the two categories (ASD and control) are generally indistinguishable. This is also evident from poor performance of a binary classifier learned using the cross-entropy loss on top of a baseline encoder. To address this, we adopt contrastive feature learning in both self supervised and supervised learning frameworks, and show that these can lead to a significant increase in the prediction accuracy of a binary classifier on this task. We further validate this by conducting thorough experimental analyses under different set-ups on two publicly available datasets.