Abstract:Machine learning algorithms are used in diverse domains, many of which face significant challenges due to data imbalance. Studies have explored various approaches to address the issue, like data preprocessing, cost-sensitive learning, and ensemble methods. Generative Adversarial Networks (GANs) showed immense potential as a data preprocessing technique that generates good quality synthetic data. This study employs a systematic mapping methodology to analyze 3041 papers on GAN-based sampling techniques for imbalanced data sourced from four digital libraries. A filtering process identified 100 key studies spanning domains such as healthcare, finance, and cybersecurity. Through comprehensive quantitative analysis, this research introduces three categorization mappings as application domains, GAN techniques, and GAN variants used to handle the imbalanced nature of the data. GAN-based over-sampling emerges as an effective preprocessing method. Advanced architectures and tailored frameworks helped GANs to improve further in the case of data imbalance. GAN variants like vanilla GAN, CTGAN, and CGAN show great adaptability in structured imbalanced data cases. Interest in GANs for imbalanced data has grown tremendously, touching a peak in recent years, with journals and conferences playing crucial roles in transmitting foundational theories and practical applications. While with these advances, none of the reviewed studies explicitly explore hybridized GAN frameworks with diffusion models or reinforcement learning techniques. This gap leads to a future research idea develop innovative approaches for effectively handling data imbalance.
Abstract:In this article, we propose a novel oversampling algorithm to increase the number of instances of minority class in an imbalanced dataset. We select two instances, Proxima and Orion, from the set of all minority class instances, based on a combination of relative distance weights and density estimation of majority class instances. Furthermore, the q-Gaussian distribution is used as a weighting mechanism to produce new synthetic instances to improve the representation and diversity. We conduct a comprehensive experiment on 42 datasets extracted from KEEL software and eight datasets from the UCI ML repository to evaluate the usefulness of the proposed (PO-QG) algorithm. Wilcoxon signed-rank test is used to compare the proposed algorithm with five other existing algorithms. The test results show that the proposed technique improves the overall classification performance. We also demonstrate the PO-QG algorithm to a dataset of Indian patients with sarcopenia.