Abstract:Bayesian optimization (BO) is an efficient framework for optimization of black-box objectives when function evaluations are costly and gradient information is not easily accessible. BO has been successfully applied to automate the task of hyperparameter optimization (HPO) in machine learning (ML) models with the primary objective of optimizing predictive performance on held-out data. In recent years, however, with ever-growing model sizes, the energy cost associated with model training has become an important factor for ML applications. Here we evaluate Constrained Bayesian Optimization (CBO) with the primary objective of minimizing energy consumption and subject to the constraint that the generalization performance is above some threshold. We evaluate our approach on regression and classification tasks and demonstrate that CBO achieves lower energy consumption without compromising the predictive performance of ML models.
Abstract:Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in many computer vision tasks. However, high computational and storage demands hinder their deployment into resource-constrained environments, such as embedded devices. Model pruning helps to meet these restrictions by reducing the model size, while maintaining superior performance. Meanwhile, safety-critical applications pose more than just resource and performance constraints. In particular, predictions must not be overly confident, i.e., provide properly calibrated uncertainty estimations (proper uncertainty calibration), and CNNs must be robust against corruptions like naturally occurring input perturbations (natural corruption robustness). This work investigates the important trade-off between uncertainty calibration, natural corruption robustness, and performance for current state-of-research post-hoc CNN pruning techniques in the context of image classification tasks. Our study reveals that post-hoc pruning substantially improves the model's uncertainty calibration, performance, and natural corruption robustness, sparking hope for safe and robust embedded CNNs.Furthermore, uncertainty calibration and natural corruption robustness are not mutually exclusive targets under pruning, as evidenced by the improved safety aspects obtained by post-hoc unstructured pruning with increasing compression.