Abstract:From the social sciences to machine learning, it has been well documented that metrics to be optimized are not always aligned with social welfare. In healthcare, Dranove et al. [12] showed that publishing surgery mortality metrics actually harmed the welfare of sicker patients by increasing provider selection behavior. Using a principal-agent model, we directly study the incentive misalignments that arise from such average treated outcome metrics, and show that the incentives driving treatment decisions would align with maximizing total patient welfare if the metrics (i) accounted for counterfactual untreated outcomes and (ii) considered total welfare instead of average welfare among treated patients. Operationalizing this, we show how counterfactual metrics can be modified to satisfy desirable properties when used for ranking. Extending to realistic settings when the providers observe more about patients than the regulatory agencies do, we bound the decay in performance by the degree of information asymmetry between the principal and the agent. In doing so, our model connects principal-agent information asymmetry with unobserved heterogeneity in causal inference.