Abstract:This paper proposes a novel approach to predict epidemiological parameters by integrating new real-time signals from various sources of information, such as novel social media-based population density maps and Air Quality data. We implement an ensemble of Convolutional Neural Networks (CNN) models using various data sources and fusion methodology to build robust predictions and simulate several dynamic parameters that could improve the decision-making process for policymakers. Additionally, we used data assimilation to estimate the state of our system from fused CNN predictions. The combination of meteorological signals and social media-based population density maps improved the performance and flexibility of our prediction of the COVID-19 outbreak in London. While the proposed approach outperforms standard models, such as compartmental models traditionally used in disease forecasting (SEIR), generating robust and consistent predictions allows us to increase the stability of our model while increasing its accuracy.
Abstract:Market manipulation is tackled through regulation in traditional markets because of its detrimental effect on market efficiency and many participating financial actors. The recent increase of private retail investors due to new low-fee platforms and new asset classes such as decentralised digital currencies has increased the number of vulnerable actors due to lack of institutional sophistication and strong regulation. This paper proposes a method to detect illicit activity and inform investors on spoofing attempts, a well-known market manipulation technique. Our framework is based on a highly extendable Gated Recurrent Unit (GRU) model and allows the inclusion of market variables that can explain spoofing and potentially other illicit activities. The model is tested on granular order book data, in one of the most unregulated markets prone to spoofing with a large number of non-institutional traders. The results show that the model is performing well in an early detection context, allowing the identification of spoofing attempts soon enough to allow investors to react. This is the first step to a fully comprehensive model that will protect investors in various unregulated trading environments and regulators to identify illicit activity.