Abstract:Bladder cancer ranks within the top 10 most diagnosed cancers worldwide and is among the most expensive cancers to treat due to the high recurrence rates which require lifetime follow-ups. The primary tool for diagnosis is cystoscopy, which heavily relies on doctors' expertise and interpretation. Therefore, annually, numerous cases are either undiagnosed or misdiagnosed and treated as urinary infections. To address this, we suggest a deep learning approach for bladder cancer detection and segmentation which combines CNNs with a lightweight positional-encoding-free transformer and dual attention gates that fuse self and spatial attention for feature enhancement. The architecture suggested in this paper is efficient making it suitable for medical scenarios that require real time inference. Experiments have proven that this model addresses the critical need for a balance between computational efficiency and diagnostic accuracy in cystoscopic imaging as despite its small size it rivals large models in performance.
Abstract:Internet of Things (IoT) sensors are nowadays heavily utilized in various real-world applications ranging from wearables to smart buildings passing by agrotechnology and health monitoring. With the huge amounts of data generated by these tiny devices, Deep Learning (DL) models have been extensively used to enhance them with intelligent processing. However, with the urge for smaller and more accurate devices, DL models became too heavy to deploy. It is thus necessary to incorporate the hardware's limited resources in the design process. Therefore, inspired by the human brain known for its efficiency and low power consumption, we propose a shallow bidirectional network based on predictive coding theory and dynamic early exiting for halting further computations when a performance threshold is surpassed. We achieve comparable accuracy to VGG-16 in image classification on CIFAR-10 with fewer parameters and less computational complexity.
Abstract:Although deep learning has made strides in the field of deep noise suppression, leveraging deep architectures on resource-constrained devices still proved challenging. Therefore, we present an early-exiting model based on nsNet2 that provides several levels of accuracy and resource savings by halting computations at different stages. Moreover, we adapt the original architecture by splitting the information flow to take into account the injected dynamism. We show the trade-offs between performance and computational complexity based on established metrics.