Abstract:To efficiently utilize the scarce wireless resource, the random access scheme has been attaining renewed interest primarily in supporting the sporadic traffic of a large number of devices encountered in the Internet of Things (IoT). In this paper we investigate the performance of slotted ALOHA -- a simple and practical random access scheme -- in connection with the grant-free random access protocol applied for user-centric cell-free massive MIMO. More specifically, we provide the expression of the sum-throughput under the assumptions of the capture capability owned by the centralized detector in the uplink. Further, a comparative study of user-centric cell-free massive MIMO with other types of networks is provided, which allows us to identify its potential and possible limitation. Our numerical simulations show that the user-centric cell-free massive MIMO has a good trade-off between performance and fronthaul load, especially at low activation probability regime.
Abstract:Deep unfolding showed to be a very successful approach for accelerating and tuning classical signal processing algorithms. In this paper, we propose learned Gaussian-mixture AMP (L-GM-AMP) - a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior. Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm. The robust and flexible denoiser is a byproduct of modelling source prior with a Gaussian-mixture (GM), which can well approximate continuous, discrete, as well as mixture distributions. Its parameters are learned using standard backpropagation algorithm. To demonstrate robustness of the proposed algorithm, we conduct Monte-Carlo (MC) simulations for both mixture and discrete distributions. Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.