Abstract:Underwater marine inspections for ship hull or marine debris, etc. are one of the vital measures carried out to ensure the safety of marine structures and underwater species. This work details the design, development and qualification of a compact and economical observation class Remotely Operated Vehicle (ROV) prototype, intended for carrying out scientific research in shallow-waters. The ROV has a real-time processor and controller onboard, which synchronizes the movement of the vehicle based on the commands from the surface station. The vehicle piloting is done using the onboard Raspberry pi camera and the support of some navigation sensors like Global Positioning System (GPS), inertial, temperature, depth and pressure. This prototype of ROV is a compact unit built using a limited number of components and is suitable for underwater inspection using a single camera. The developed ROV is initially tested in a pool.
Abstract:This paper presents a generalized framework for the simulation of multiple robots and drones in highly realistic models of natural environments. The proposed simulation architecture uses the Unreal Engine4 for generating both optical and depth sensor outputs from any position and orientation within the environment and provides several key domain specific simulation capabilities. Various components and functionalities of the system have been discussed in detail. The simulation engine also allows users to test and validate a wide range of computer vision algorithms involving different drone configurations under many types of environmental effects such as wind gusts. The paper demonstrates the effectiveness of the system by giving experimental results for a test scenario where one drone tracks the simulated motion of another in a complex natural environment.