Abstract:Feature selection can greatly improve performance and interpretability in machine learning problems. However, existing nonparametric feature selection methods either lack theoretical error control or fail to accurately control errors in practice. Many methods are also slow, especially in high dimensions. In this paper, we introduce a general feature selection method that applies integrated path stability selection to thresholding to control false positives and the false discovery rate. The method also estimates q-values, which are better suited to high-dimensional data than p-values. We focus on two special cases of the general method based on gradient boosting (IPSSGB) and random forests (IPSSRF). Extensive simulations with RNA sequencing data show that IPSSGB and IPSSRF have better error control, detect more true positives, and are faster than existing methods. We also use both methods to detect microRNAs and genes related to ovarian cancer, finding that they make better predictions with fewer features than other methods.
Abstract:Stability selection is a widely used method for improving the performance of feature selection algorithms. However, stability selection has been found to be highly conservative, resulting in low sensitivity. Further, the theoretical bound on the expected number of false positives, E(FP), is relatively loose, making it difficult to know how many false positives to expect in practice. In this paper, we introduce a novel method for stability selection based on integrating the stability paths rather than maximizing over them. This yields a tighter bound on E(FP), resulting in a feature selection criterion that has higher sensitivity in practice and is better calibrated in terms of matching the target E(FP). Our proposed method requires the same amount of computation as the original stability selection algorithm, and only requires the user to specify one input parameter, a target value for E(FP). We provide theoretical bounds on performance, and demonstrate the method on simulations and real data from cancer gene expression studies.
Abstract:Gibbs posteriors are proportional to a prior distribution multiplied by an exponentiated loss function, with a key tuning parameter weighting information in the loss relative to the prior and providing a control of posterior uncertainty. Gibbs posteriors provide a principled framework for likelihood-free Bayesian inference, but in many situations, including a single tuning parameter inevitably leads to poor uncertainty quantification. In particular, regardless of the value of the parameter, credible regions have far from the nominal frequentist coverage even in large samples. We propose a sequential extension to Gibbs posteriors to address this problem. We prove the proposed sequential posterior exhibits concentration and a Bernstein-von Mises theorem, which holds under easy to verify conditions in Euclidean space and on manifolds. As a byproduct, we obtain the first Bernstein-von Mises theorem for traditional likelihood-based Bayesian posteriors on manifolds. All methods are illustrated with an application to principal component analysis.
Abstract:We introduce an algorithm, Cayley transform ellipsoid fitting (CTEF), that uses the Cayley transform to fit ellipsoids to noisy data in any dimension. Unlike many ellipsoid fitting methods, CTEF is ellipsoid specific -- meaning it always returns elliptic solutions -- and can fit arbitrary ellipsoids. It also outperforms other fitting methods when data are not uniformly distributed over the surface of an ellipsoid. Inspired by calls for interpretable and reproducible methods in machine learning, we apply CTEF to dimension reduction, data visualization, and clustering. Since CTEF captures global curvature, it is able to extract nonlinear features in data that other methods fail to identify. This is illustrated in the context of dimension reduction on human cell cycle data, and in the context of clustering on classical toy examples. In the latter case, CTEF outperforms 10 popular clustering algorithms.